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Abstract

The effect of an antisymmetric double exchange (AS DE) interaction in the mixed-valence (MV) dimeric dn�/dn�1 and trimeric

dn�/dn�/dn�1 clusters of orbitally non-degenerate ions is considered. In the dimeric clusters, strong isotropic Anderson�/Hasegawa

(AH) DE and Heisenberg exchange interactions (t �/J model) form isotropic DE states E9
0(S). In the MV dimers, the Moriya spin-

flop hopping, which is determined by the spin-orbit coupling, is described by the effective Hamiltonian of an AS DE interaction

HASDE�2iKabTab(Sb�Sa); where Kab��Ka is a real AS vector coefficient, Tab is the isotropic transfer operator. The operator

HASDE has a form of the spin-transfer interaction. Analytical expressions for the matrix elements of HASDE were obtained for dn�/

dn�1 clusters. The AS DE matrix elements depend on the projection M of S. AS DE mixes the AH DE states E�
0 (S) and E�

0 (S) with

the same S of the different parity. The AS DE coupling and the Dzialoshinsky�/Moriya (DM) AS exchange (HDM�Gab[Sa�Sb])

mix the AH states with different S of the same parity. AS DE forms the effective spin S ?. In the d1�/d2 and d9�/d8 clusters, the AS

DE contributions to the zero-field splitting (ZFS) parameters are different for the AH high-spin states E�(3/2) and E�(3/2). An AS

DE leads to non-collinear orientation of spins in the MV pair and anisotropy of g-factors. An anisotropic DE contributes to ZFS. In

the trimeric MV clusters, the isotropic DE forms the isotropic trigonal 2S�1G terms, G�/A1, A2, E . The AS DE results in the new

effect: the linear fine splittings D of the degenerate 2S�1E DE terms. The fine splittings D are proportional to the AS DE parameter

KZ �/(KZ
ab�/KZ

bc �/KZ
ca )/3 of the MV trimer. The vector of the AS DE interaction KZ is directed along the trigonal Z -axis of the MV

trimer. The AS DE mixes the 2S�1A1 and 2S�1A2, 2S�1E and 2S�1E DE terms (DS�/0, 1). In the trimeric MV clusters with high

individual spins si, the AS DE and DM AS exchange mixing of the DE levels 2S�1G determines the contributions of the second order

to the ZFS parameters DS, which are different for the Ai and E DE terms. For the [Cu(II)Cu2(I)] delocalized cluster, the AS DE ZFS

D�/2KZ�3of the ground 2E DE term determines strong anisotropy of the Zeeman splittings, anisotropy of g -factors (gZ"/0,

gX,Y�/0) and magnetic properties.
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1. Introduction

The mixed-valence (MV) clusters of transition metal

ions are attracting considerable attention as single-

molecular magnets, models for investigation of magnet-

ism at the mesoscopic scale [1�/4] and the active centers

of ferredoxins and enzymes. In the MV clusters of

paramagnetic ions, the double exchange (DE) [5,6] and

the Heisenberg exchange (HE) interaction H0�aJijSiSj

forms the cluster states. The Anderson�/Hasegawa (AH)

[6] DE interaction (the hopping of the extra electron

between dn and dn�1 ions in the MV pair) results in the

spin-dependent resonance splittings E9
0 (S )�/9/(S�/1/

2)t0/(2s0�/1), where S is the total spin, s0�/S (dn), t0 is

the one-electron transfer (ET) integral. In the dimeric

MV systems, the states of the AH DE plus HE

interactions (t �/J model) E9
0 (S )�/9/(S�/1/2)t0/(2s0�/

1)�/J [S (S�/1)�/3/4] are isotropic. The AH DE coupling

does not mix the states with different S and also the

E�
0 (S ) and E�

0 (S ) DE states of different parity with the

same S . Strong AH DE results in the ferromagnetic

ground state Sgr�/Smax. The isotropic AH DE in dimers

was investigated in detail (see review articles [7�/9] and

references therein). Strong isotropic DE interaction t�/
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1350 cm�1 was found experimentally in the

[Fe(II)Fe(III)] cluster in the [Fe2(OH)3(tmtacu)2]2�

complex [10,11]. The concept of the DE (spin-dependent

ET) in the MV pair is widely used in magnetism of the
MV compounds, particularly DE magnets, in the theory

of the MV metal clusters in inorganic chemistry and

bioinorganic chemistry of iron�/sulfur proteins.

The DE concept was developed for trimeric [12�/15],

tetrameric [16,17] and more complicated clusters [17]

(see [7�/9]) as well as for the MV dimers of orbitally

degenerate ions [18]. Theoretical investigations of DE

between the three ions in the MV trimers [12�/14,19�/29]
demonstrate a variety of different types of magnetic

behavior. The resulting non-ferromagnetic DE ground

state was found experimentally in the MV Ni trimer in

[30]. The DE coupling in one MV pair determines the

magnetic properties, Mössbauer and EPR spectra of the

[3Fe4S] clusters in ferredoxins and model systems

[15,8,19,31�/34,29].

The migration of the extra electron (hole) among the
three ions in the trigonal trimer forms the resulting

isotropic trigonal DE terms 2S�1G (A1, A2, and E ) [13].

The spin dependence of the DE parameters is deter-

mined by the 9-j symbols [12,13]. The trigonal DE states

are accidentally degenerate in the t �/J model. The DE

exchange does not mix different 2S�1 G DE terms of

trimer.

Usually the spin-orbit coupling (SOC) is not consid-
ered in the theory of the DE between orbitally non-

degenerate ions. However, the consideration of only

isotropic DE is not enough for description of zero-field

splittings (ZFS) of the DE levels, magnetic anisotropy

and anisotropy of the EPR spectra. The consideration of

ZFS and anisotropy requires the taking SOC into

account in the theory of the DE.

The taking SOC into account [35,36] in the theory of
the exchange between two identical orbitally non-

degenerate dn ions results in the Dzialoshinsky�/Moriya

(DM) [35�/37] antisymmetric (AS) exchange interaction

HDM�aijGij [Si�Sj]; where Gij �/�/Gji is an AS DM

vector coefficient. The virtual vector transfer (spin-flop

hopping) [36] in the Cu(II)�/Cu(II) system determines

the DM AS parameter and anisotropic (AN) interac-

tion. The microscopic theory of the DM AS exchange
and symmetric AN exchange between monovalent ions

is widely used in magnetism and was further developed

in Refs. [38�/48] for insulating cuprates.

The SOC for the transfer of hole between the

neighboring sites in doped La2CuO4 was considered in

Refs. [42,46]. An extension of the t �/J model includes

the spin-orbit hopping term and AN term [42]. The

model [42] is restricted by the systems of the hole
transfer in the Cu(II) matrix (Si �/1/2) and does not

consider the high-spin systems and polynuclear clusters.

The SOC effect in the DE model and origin of ZFS of

the DE levels are considered in this work for dimeric

[dn�/dn�1] and trimeric [dn�/dn�/dn�1] clusters. The

taking SOC into account in the theory of the Anderson�/

Hasegawa DE leads to antisymmetric double exchange

(AS DE) interaction [53,54]. The AS DE contributes to
the second-order ZFS parameters DS(2S�1G) of the
2S�1Gi DE terms, S�/1/2. AS DE determines aniso-

tropy of the Zeeman splitting, magnetic moment and

EPR spectra. In the MV trimers, AS DE splits linearly

the trigonal DE 2S�1E -terms.

2. Spin-orbit coupling in the d1�/d0, d9�/d10 clusters with

double exchange (ET)

In the Moriya theory [35,36] of the AN super-

exchange, the one electron Hamiltonian of the inter-

ion virtual transfer between Cu(II) ions was written in
conventional terms of annihilation and creation opera-

tors

H0
ab�tab[a�

� b��a�
¡ b¡�a�b

�
� �a¡b

�
¡ ]

�Cz
ab[a�

� b¡�a�
¡ b¡�a�b

�
� �a¡b

�
¡ ]

�C�
ab [a�

� b¡�a�b
�
¡ ]�C�

ab [a�
¡ b��a¡b

�
¡ ] (1)

tab �/�8a jj8b� are the standard isotropic inter-center

one-ET integrals without SOC. The first term in Eq. (1)

is the convenient transfer (DE) term for the t �/J models.

The AS vector transfer integrals Cab(Cv
ab��Cv

ba); which

are connected with the SO coupling, were determined in

Ref. [36]

h8 a(ma�91=2)jHabj8 b(mb�91=2)i�tab(8 )9C9
ab ;

h8̄ ajj8bi�C�
ab ; h8 ajj8̄ bi�C�

ab ;

h8 b(91=2)jj8 a(91=2)i�tab(8 )9Cz
ab;

h8̄ bjj8ai�C�
ba ; h8 bjj8̄ ai�C�

ba

(2)

/ �C9
ab(Cx

ab9 iC
y
ab): The basis wave functions are 8a ��/

8a(m�/1/2)�/8a and 8 a��8 ¡(m��1=2)� �8 a [36].

The vector transfer parameters Cij are pure imaginary.

These spin-flop hopping terms determine the DM AS

exchange constants Gij �2iCijJ=t and AN exchange
contribution Gij in the pseudodipolar AN term SiGijSj

[36] in the theory of superexchange between Cu(II) ions.

By using the Hamiltonian (Eq. (1)) for consideration

of ET in the d1�/d0 MV cluster, we obtain the matrix of

ET (d1�/d0?/d1�/d0) in the model (Eq. (1)) in the form

8̄a¡
8 a�

8̄ b¡
8 b�

0 0 tab�Cz
ab C�

ab

0 0 C�
ab tab�Cz

ab

tab�Cz
ba C�

ab 0 0

C�
ba tab�Cz

ba 0 0

2
66664

3
77775 (3)

To compare with the model (Eqs. (1) and (3)), we will

consider first the SOC effect in ET (DE) in the case of

the d1�/d0 dimer (Ti3��/Ti4� and V4��/V5� pair).
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The microscopic calculation of DE plus SOC for the

MV dimer d1�/d0 includes the formation of the renor-

malized ground state by the SOC admixture of the

excited crystal field (CF) states cm into the ground state
80 of the d1

a (d1
b ) ion of the d1�/d0(d0�/d1) pair in the

localizations d1
a �/d0

b (ja*b�) and d0
a �/d1

b (jab*�). These

renormalized ground states 8a are used then for

calculations of DE (resonance interaction).

For the d1�/d0 MV dimer, the Hamiltonian of the

pair Ĥ12�Ĥa+b�Ĥab+�V̂ 12 is the sum of the single-site

terms for the localizations ja*b� and jab*� and inter-

ion interaction V̂ 12 of the direct type (Coulomb inter-

action) or indirect interaction through the ligand bridge.
The single-site Hamiltonian for the d1

a ion includes the

CF Hamiltonian HCF [49,50] for the 3d-electron and

SOC Ha
LS �/laLaSa . In the case of the ja*b� localiza-

tion, the d0 ion on the center b has a closed d-shell. The

local octahedral CF with tetragonal distortion forms the

orbitally non-degenerate ground z0
a �/da

xy state of the d1
0

ion. The excited CF states ja�/(dyz)a, ha�/(dzx)a, ua�/

(d3z2�/r2)a and va�/(dx�y2)a are separated by the CF
intervals oaj ,oah ,oau and oan , respectively [49,50]. SOC

admixes the excited CF states cm into the ground z0
a

state. The non-zero SOC matrix elements for the t and e

orbitals are represented in Refs. [49,50]. In the first order

perturbation, the renormalized ground state functions

for the center a have the form

za�� [z0
a�� igav va��gajja¡� igahha¡]=

ffiffiffiffiffi
n0

p
;

za¡� [z0
a¡� igav va¡�gajja�� igahha�]=

ffiffiffiffiffi
n0

p
(4)

where d-orbital functions refer to the local Cartesian
frame and

gav �l=oav ; gaj�l=2oaj; gah�l=2oah (5)

n0I0�/1�/gn
2�/gj

2�/gh
2 . The localized states ja*b�(d1

a �/

d0
b ) and jab*�(d0

a �/d1
b ) have the same energy. For the

delocalized d1�/d0 pair with S�/1/2, the only active

interaction V̂ 12 is the ET (double exchange). The DE

interaction leads to the resonance splitting. The matrix

elements of the DE coupling depend on the projection

M of spin S

hFa�b(S�1=2; M�91=2)jV̂ 12jFab�(1=2; 91=2)i
�tab(z)9 iKz

ab (6)

where the isotropic transfer integral has the form

tab� [t0
ab(z)�t?ab]=n0; t?ab� [g2

vtv�g2
jtj�g2

hth] (7)

The t0
ab(z)�hz0

a½V̂ 12½z
0
bi�tz term is the standard integral

of ET in the ground state without SOC. The t ?ab term is

the contribution to tab of the transfer in the excited

states due to the SOC admixture. In the real vector

transfer parameter

Kz
ab� [gb

v tab(z0
a; vb)�ga

vtab(va; z0
b)]=n0 (8)

/tab(z0
a; vb)�hz0

a½V̂ 12½vbi is the transfer integral between

the ground orbital z0
a state on the center a (�/a [b ]) and

the excited vb state on the center b(�/b [a ]). In the
resonance representation c9(S )�/[Fa *b (S )9/Fab *(S )]/

�2, the matrix of the DE plus the SOC for the d1�/d0

MV dimer has the form:

C� C� C� C�

tab 0 iKz
ab �iK�

ab

0 tab iK�
ab �iKz

ab

�iK9
ab �iK�

ab �tab 0

iK�
ab iKz

ab 0 �tab

2
66664

3
77775 (9)

where tab�tab(z); K9
ab �Kh

ab9 iKz
ab�K

y
ab9 iKx

ab;

Kh
ab� [ga

htab(ha; z0
b)�gb

htab(z0
b; hb)]=n0;

Kj
ab� [ga

jtab(za;j
0
b)�gb

jtab(j0
b; zb)]=n0 (10)

The real vector transfer coefficients Kab are AS: Kab�
�Kba(Cz

ab� iKz
ab; C9

ab � iK9
ab ): The diagonal terms 9/

tab(z ) coincide with the result of the Anderson�/Hase-
gawa equation E0

9(S )�/9/(S�/1/2)tz /(2s0�/1). The SOC

mixing of the isotropic AH DE states E�(S ) and E�(S )

is described by the non-diagonal AS DE terms Kv
ab in

Eq. (10). The DE�/SOC splitting for the d1�/d0 cluster

has the form

Ex(S; M)�9
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�K2

p
; (11)

where t�/tz and K2�/K2
z �/K2

x �/K2
y ,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�K2

p
is the

effective transfer parameter.

The transfer integrals between the ground state and

excited states tab (80
a ,cb )"/0 due to the tilt of the

distorted octahedra ML6 on the small angle u (u�/1)

[36,46,39�/42]. The tilting results in a small (�/u )

admixture of the j and h orbitals to the ground z

orbital. In the case of the ja*b� localization, the local

CF 3d orbitals (z ?a )qr , j ?a , h ?a , u ?a , v ?a may be written in

the common xyz -coordination system in the form

[42,46] (u1�/u /�2):

(z?a)qr�za�u1(ja�ha); v?a�va�u1(ja�ha);

u?a�ua�u1

ffiffiffi
3

p
(ja�ha);

j?a�ja�u1(ya�
ffiffiffi
3

p
ua�za);

h?a�ha�u1(�va�
ffiffiffiffiffiffiffi
3ua

p
�za)

(12)

In the case of the jab*� localization, u should be
changed to �/u in 8b . The non-zero transfer integrals

(�/u ) between the ground state z ?a and excited c ?b states

have a form

tab(z?a;j?b)��u1[tab(z)�tab(j)]; tab(z?a; h?b)

��u1[tab(z)�tab(h)] (13)

The corresponding transfer integrals between the

ground state z ?b and excited c ?a state have the opposite

sign: tab(z ?b , j ?a )�/�/tab (z ?b , j ?b ), tab (z ?b , h ?a)�/�/tab(z ?a ,

M.I. Belinsky / Polyhedron 22 (2003) 2253�/2265 2255



h ?b ) [36]. The tab (80
a , cb ) transfer integrals were

calculated for the Cu(II)�/Cu(II) pairs in [36,40�/48].

The components of an AS vector transfer (DE) para-

meter Kk
ab in Eqs. (8) and (10) in the d1�/d0 MV pair are

the following [53]:

Kx
ab��Kj

ab�
lu

2oj
(tz�tj);

K
y
ab��Kh

ab�
lu

2oh
(tv�th); Kz

ab�0

(14)

jKx
ab j�/jKy

ab j in the case of the tetragonal distortion with

oj�/oh , tj�/th . jKx
ab j"/jKy

ab j in the case of the low-
symmetry distortion. The resonance splitting in the

DE�/SOC model E9�/9/�t2
ab�/K2

x �/K2
y depends on

the effective transfer parameter teff�/�t2
ab�/K2

x �/K2
y .

The estimations of the vector transfer parameters

jCabj(�/jKabj) were obtained by Moriya [36] jCab j/tab �/

Kab /tab �/Dg /g , where Dg is a deviation from the g -

value of a free electron. The AS Kab vector DE

parameters may be the quantities of the order of 1�/5%
of the DE parameter tab .

In the case of the hole-transfer in the Cu2��/

Cu�(d9�/d10) pair, the tilting of the CuL6 octahedra

results in a small (�/u ) admixture of the j and h

orbitals to the ground v0 orbital [36,42]. The compo-

nents of the AS DE parameter �K i
ab are the following

[42,53]:

Kx
ab��Kj

ab��[gb
jtab(v0

a; j?b)�ga
jtab(v0

b; j?a)]

��
lu

2Dj

(tv�tj);

K
y
ab��Kh

ab��[gb
htab(v0

a; h?b)�ga
htab(v0

b; h?a)]

��
lu

2Dh

(tv�th);

Kz
ab�0 (15)

where Dc�/D[ECF(c )�/Egr(v0)],c�/j , h . An AN inter-

action H?ANaijSiGijSj [42] with symmetric AN parameter

Gij�
4

U
[CijCji�CjiCij�1(CijCji)]

�
J

t2
[CijCji�CjiCij�1(CijCji)] (16)

is not active in the Cu2��/Cu�(d9�/d10) pair with the

total spin S�/1/2 and J�/0.

3. Antisymmetric double exchange in the d9�/d8 (d1�/d2)

cluster

The calculations of DE plus SOC in the dn�/dn�1 MV
dimers with the high-spin ions (Si ]/1/2) we consider on

an example of the d9�/d8 (d1�/d2)[Sa �/1/2, Sb �/1; S�/

1/2, 3/2] cluster. In the spin representation, the Hamil-

tonian of the system has the form Ĥ12�Ĥe
a+b�Ĥe

ab+�
V̂ ab; where Ĥe

a+b(He
ab+) is the Hamiltonian in the

ja*b�(jab*�) localization, and V̂ ab is the DE operator.

The Hamiltonian He
a *b �/HHE�/HDM�/HAN�/H0

ZFS of

the localized d2
a �/d1

b , clusters includes the Hamiltonian
of isotropic HE HHE�2JabSaSb; an AS DM exchange

HDM�Gab[Sa�Sb]; an AN exchange HAN�SaGabSb;
where Gab�Gba is symmetric tensor. The Hamiltonian

He
a *b includes also the standard operator of the local

(individual) ZFS [49�/51] for ion a with Sa�/1/2

Ha
ZFS�Da[S2

az�Sa(Sa�1)=3]�Ea(S2
ax�S2

ay) (17)

where Da and Ea are the individual ZFS parameters of
the localized a ion.

In the case of the localized clusters with strong HE

(J� ½Gab�Gab; J�Da; Ea); all AN interactions of the

intra-ion and inter-ion type result in the second-order

ZFS of the states with S �/1/2. The symmetric AN

tensor SGS may be represented in the standard form of

ZFS operator [51]

ĤZFS�GxxŜ2
x�GyyŜ2

y�GzzŜ
2
z

�DS

	
Ŝ2

z �
1

3
S(S�1)



�ES(Ŝ2

x�Ŝ2
y) (18)

where DS �/Gzz�/(Gxx�/Gyy )/2, E�/(Gxx�/Gyy)/2 and S

is the effective spin. In the effective ZFS Hamiltonian
(Eq. (18)) of the pair, the effective ZFS parameters DS ,

ES include the AN intra-ion and inter-ion contributions.

We suppose, for simplicity, that both ja*b� and jab*�
configurations are characterized by the same exchange

parameters J , Gab, Gab and also by the same corre-

sponding CF parameters o8 the SOC constants l and

ZFS parameters for individual ions.

For consideration in the model Hamiltonian (Eq. (1)),
we shall treat the d8

a �/d9
b cluster as the hole equivalent

d2
a �/d1

b system. For the pair of ions in distorted

octahedral local coordination, the localized determinant

wave functions Fa *b(S , M ) {Fab *(S , M )} for example,

for the d8
a �/d9

b {d9
a �/d8

b } cluster have the form

Fa *b (S�/3/2, M�/3/2)�/juavaubj,Fab*(3/2, 3/2)�/

juavbubj. By using the Moriya Hamiltonian (Eq. (1)),

the determinant wave functions and correlation �Cij �
i �K ij ; we obtain the DE matrix elements between the

localized states Fa *b(S , M ) and Fab+( �S; �M) with the

same total spin S�S

M.I. Belinsky / Polyhedron 22 (2003) 2253�/22652256



hFa�b(3=2; 93=2)jH0
abjFab�(3=2; 93=2)i�tv9 iK z

ab;

hFa�b(3=2; 91=2)jH0
abjFab�(3=2; 91=2)i�tv9 iK z

ab=3;

hFa�b(1=2; 91=2)jH0
abjFab�(1=2; 91=2)i

�tv=295iKz
ab=6

(19a)

hFa�b(3=2; 93=2)jH0
abjFab�(3=2; 91=2)i� iK�=

ffiffiffi
3

p
;

hFa�b(3=2; 91=2)IFab�(3=2;�1=2)i�2iK�=3;

hFa�b(1=2; 91=2)IFab�(1=2; �1=2)i�5iK9=6:

The AS DE matrix elements of the mixing of the S�/1/2

and S�/3/2 states are the following:

hFa�b(3=2; 91=2)IFab�(1=2; 91=2)i��i
ffiffiffi
2

p
KZ=3;

hFa�b(3=2; 93=2)IFab�(1=2; �1=2)i� iK�=
ffiffiffi
6

p
;

hFa�b(3=2; �3=2)IFab�(1=2; �1=2)i

��iK9=3
ffiffiffi
2

p

(19b)

where t�/tv, Kk�/Kab
k . The isotropic transfer contribu-

tions (�/tv ) to Eq. (19a) do not depend on the projection

M and are described by the AH [6] DE term (S�/1/2)tv /

(2S0�/1). The Kab
k terms in Eq. (19a) represent the AS

DE contributions (Kab
k �/�/Kba

k ). The AS DE matrix

elements depend on M. The matrix of the Anderson�/

Hasegawa DE, HE, ZFS and AS DE for the d9
a �/

d8
a (d1

a �/d2
b ) MV cluster is represented in Ref. [53].

In the localized clusters, the DM AS exchange HDM�
aijGij[Si�Sj]; mixes the localized states with different

total spin S [53].

In the resonance representation C9(S , M ), the states

of the t �/J model (E0
9(1/2)�/9/t /2) and (E0

9(3/2)�/3J9/

t) are represented on (Fig. 1(b)). The AN interactions

Eq. (18) splits the S�/3/2 levels: D�/2DS (Fig. 1(c)). The

axial ZFS parameter DS of the localized cluster includes

the contributions of the individual ZFS terms (Eq. (17)),

axial AN exchange and AS DM exchange.

The AS DE (terms �/Kab
k ) mixes the states of

different localization with the same total spin S :

Fa *b (S�/3/2) with Fab *(3/2), and Fa *b (1/2) with

Fab *(1/2) (Eqs. (19a) and (19b)). In the resonance

representation C9(S , M), an AS DE mixes the AH

DE states C�(3/2)[E0
�(3/2)�/t�/3J ] and C�(3/2)[E0

�(3/

2)�/�/t�/3J ] of different parity with the same total spin

S�/3/2. The AS DE mixes also the Anderson�/Hase-

gawa DE states C�(1/2)[E0
�(1/2)�/t /2] and C�(1/

2)[E0
�(1/2)�/�/t /2] with the same total spin S�/1/2.

The AS DE mixing of the AH states with the same S

depends on M . The DE energy intervals between the

exchange�/resonance AH DE levels E9
0 (S , M ) essen-

tially exceed the non-diagonal matrix elements (�/Kab)

of the AS DE mixing of the S�/3/2 and S�/1/2 levels

since t �/J �/Kab .

The AS DE terms (�/Kab
k ) mixes also the states of

different localization with different total spin S :

Fa *b (S�/3/2) with Fab *(1/2), and Fa *b (l/2) with

Fab *(3/2) (Eq. (19b)). In the resonance C9(S , M )

representation, AS DE (and DM AS exchange) mixes

the Anderson�/Hasegawa DE states E�(3/2) [E�(3/2)]

with E�(1/2)[E�(1/2)] of the same parity with different

S . The AS DE mixing of the AH states with different S

depends on M . The AS DE contribution to the mixing

of the DE levels with different S is stronger than the

DM AS exchange contribution since Kab �/Gab , Kab �/

t (Dg /g)), Gab �/J (Dg /g )), t �/�/J . In comparison with

the DM AS exchange, which mixes the localized states

with different total spins S [53], an AS DE in the

delocalized system mixes the AH states E�
0 (S ) and

E�
0 (S ) of the different parity with the same S , and also

the AH states with different S with the same parity.

In the case J�/0. DS�/0 for the d8�/d9 (d2�/d1)

cluster, we obtain the four states E9(S ?�/3/2)�/9/tK,

E9(S ?�/1/2)�/9/tK/2, which are characterized by the

effective DE (transfer) parameters to tK�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�K2

p
:/

As it follows from the group-theoretical analysis [52]

and the effective Hamiltonian method [49�/51], the levels

with S�/3/2 of the MV dn�/dn�1 cluster must be split in

the second order on SOC in the low-symmetric CF. The

Hamiltonian of the zero-filed splitting has a standard

form Eq. (18) [49�/51]. The individual d8-ion (Ni2�)

with S�/1 is characterized by large ZFS: DZFS(d8)�/

2D0�/2�/4 cm�1. The ZFS of the individual Ni2�-ion

is a result of the combined effect of a noncubic CF and

SOC in the second order of perturbation [49�/51]. The

ZFS parameter D0 of the Ni2�-ion is proportional to

l2(1/oj�/1/oz) ZFS of the individual d8-ion essentially

contributes to ZFS DZFS
0 (S�/3/2)�/2DS of the S�/3/2

cluster state of the d8�/d9 pair, where DS�/D0�/G. The

symmetric AN exchange coupling in the localized d8�/d9

pair (HAN�/G1(SaxSbx�/SaySby )�/G2SazSbz , G1�/

Fig. 1. An AS DE in the d8�/d9 (d2�/d1) MV cluster with the AH DE,

HE (t �/J model) and initial ZFS DZFS
0 �/2DS. (a) The Heisenberg

levels, (b) the levels of the Anderson�/Hasegawa plus HE (t �/J ) model,

(c) initial ZFS of the S�/3/2 levels of the t�/J model, (d) the

dependence on the AS DE coupling [53]. Solid lines: Ka�/Kz ,

Kx ,y �/0, dashed lines: Ka�/Kx ,y , Kz�/0.
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Gxx �/Gyy , G2�/Gzz) contributes to the axial AN para-

meter G�/(G2�/G1)/3.

Fig. 1 demonstrates the action of the AS DE on the

fine splittings of the levels of the d9�/d8 (d1�/d2) system
with the AH DE, Heisenberg exchange and an initial

axial ZFS 2D0 of the localized S�/3/2 level, t�/20, J�/

15, DS�/5 cm�1 [53]. The AH DE splits the HE levels

S�/3/2 and S�/1/2 (Fig. 1a) on the t �/J AH DE levels

E9
0 (S�/3/2) and E9

0 (S�/1/2) (Fig. 1). The ZFS opera-

tor HZFS�/DS[Sz
2�/S (S�/1)/3] splits the DE E9

0 (S�/3/2)

levels on the Kramers doublets jM j�/3/2 and jM j�/1/2

(Fig. 1c). The AS DE leads to modification of ZFS of
the high-spin states. The ZFSs are different for the

E�(S ?�/3/2) and E�(S ?�/3/2) states:

D�
ZFS[E1(3=2)]�2(DS�d9

K ) (20)

where the AS DE contributions to ZFS have a form:

d9
k � [d9

z �(d9
x �d9

y )=2]; d9
x �4K2

xJ=3t(t96J) (21)

x�/x , y , z . Since the intervals between the mixed AH

levels are different in the t �/J model: Dt �J(E9(S�/3/2),
E9(S�/1/2))�/t /29/3J , the repulsion between the

E�(S ?�/3/2) and E�(S ?�/1/2) levels is stronger than

between the E�(S ?�/3/2) and E�(S ?�/1/2) levels. As a

result, the AS DE contribution dK
�(E�(3/2)) to ZFS of

the E�(3/2) state is larger than AS DE contribution

dK
�[E�(3/2)] to ZFS of the E�(3/2) state. The mixing of

different spins by AS DE essentially contributes to the

fine splitting. The AS DE contribution to ZFS is
different for the cases Kz "/0, Kx ,y "/0 and Kx ,y "/0,

Kz �/0 (Fig. 1d) [53]. The AS DE contributions dK
9 to

ZFS are proportional to K2J /t(t9/6J ) in accordance

with the estimate K2J /t2 for the symmetric AN para-

meters (Eq. (16)). This ZFS of the resonance AH DE

states E9(S ?�/3/2) disappears when J�/0.

The DM AS exchange mixing of levels results in the

modification of the ZFS parameters dx
9 (Eq. (20)):

d9
x �d9

x �v9
x ; where vx

9�/Gx (4Kx9/3Gx )/6(t9/6J )

[53].

The AS DE results in an increase of the effective DE

splittings (Fig. 1d). In the case Kz "/0, Kx ,y �/0, t �/K ,

the DE splittings have the form (r�/J /t ):

D?DE� [S?�1=2]#(t�t1K);

D?DE� [S?�3=2]�2(t�t2k);

t1K� (K2
z =2t)[(1�100r2)=(1�36r2)];

t2K� (K2
z =2t)[(1�20r2)=(1�36r2)]:

(22)

The AS DE contributions tiK to the AH DE parameter t

are different for the S ?�/3/2 and S ?�/1/2 states. The AS

DE coupling leads to contribution DJ? �/�/4Kz
2J /(t2�/

36J2) to the HE interval DJ�/3J .
For the d9�/d8 (d1�/d2) cluster with the AH DE plus

HE and AS DE, the dependence of the DE levels on the

HE parameter J is represented on Fig. 2 (t�/20 cm�1,

Kz �/10 cm�1, Kx ,y �/0) for the model with DS�/0,

ES�/0, Gab �/0. The dashed lines represent the t �/J

levels of the pure Anderson�/Hasegawa DE plus HE

model. The AS DE splittings of the states E�(S ?�/3/

2)J�0 take place both in the case of an antiferromagnetic

HE (J B/0, Sgr�/Smin) and ferromagnetic exchange (J B/

0, Sgr�/Smax). In the case of strong J, the levels are

characterized by the total spin S . The external sublevels
E9

P(S ?�/3/2) with the maximal effective DE splitting

2tK depend linear on J . The ZFS for the E�(S ?�/3/2)

{E�(S ?�/3/2)} state is d1K�/dK
�(E�(3/2))�/8Kz

2J /

3t (t�/6J ), {d2K�/dK
�(E�(3/2))�/8Kz

2J /3t (t�/6J )} J �/

0 and d2K for J B/0. The AS DE mixes the states

characterized by S . The strong repulsion of the levels

takes place in the areas of the crossing of the AH levels

of the t �/J model Fig. 2.

4. Operator of antisymmetric double exchange

For dimeric MV dn�/dn�1 clusters in the t �/J model,

the Moriya vector transfer operator Eq. (1) may be

represented in the form of the effective Hamiltonian.
This effective Hamiltonian of the AS DE has the

following form

HASDE�2iKabTab(Sb�Sa); (23)

where Kab is an AS (Kab��Kba) vector coefficient, T̂ab is

the transfer operator, Sb, Sa are spins of the ions of the

dn�/dn�1 pair [53]. The effective AS DE Hamiltonian

Eq. (23) describes the spin-transfer interaction. The
operator Eq. (23) of the AS DE is Hermitian and

invariant relative to the time inversion operation. The

matrix elements of the second-order perturbation op-

Fig. 2. The dependence of the energy levels E9(S ) on the HE

parameter J in the d8�/d9 (d2�/d1) system with the Anderson�/

Hasegawa DE (t�/20 cm�1), HE and AS DE (Kz�/10 cm�1,

Kx ,y �/0)*/solid lines. The dashed lines*/the levels of the t �/J model

(K�/0).
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erator HASDE between the states of different localization

have the form

hFa+b(S;M)jHASDEjFab+(S;M)i
�2iKabhFa+b(S;M)jT̂abjFab+(S;M)i

� hFab+(S;M)j(Sb�Sa)jFab+(S;M)i (24)

The isotropic transfer operator T̂ab acts between the

states of different localization with the same S and M.

The spin operator (Sb�Sa) is active in the spin space of

the states of the same localization.

In the case of the states with the same S (S�S); the
first multiplier in Eq. (24) represents the Anderson�/

Hasegawa DE contribution

�Fa+b(S;M)½T̂ab½Fab+(S;M)�� [(S�1=2)=(2Sa�1)]:
The matrix elements of the k component of the spin

operator (Sb�Sa) depend on the difference [Sb(Sb�/

1)�/Sa(Sa�/1)] [53]. The matrix elements of the AS DE

operator Eq. (23) between the states of different

localization with S�S; M�M depend on projection
M of S :

hFa+b(S;M)jHASDEjFab+(S;M)i

� iKz
ab

�
2S � 1

2Sa � 1

�
[Sb(Sb � 1) � Sa(Sa � 1)]

S(S � 1)
M (25)

The mixing of the Anderson�/Hasegawa DE states

with different total spin S (S?"S); which was obtained

in the model Hamiltonian Eq. (1), may be described by

the effective operator of the AS DE mixing H?ASDE�
2iKabT?ab(Sb�Sa): The matrix elements
�Fa+b(S;M)½H?ASDE½Fab+(S;M)� in this case (S?"S)

have the form of Eq. (24), where the matrix elements

of the transfer operator T?ab; are the following:

hFa+b(S;M)jT?abjFab+(S;M)i�(2Sa�1)=2 (26)

For the states with S?"S; the AS DE interaction matrix

elements of the spin mixing in Eq. (26) are represented in

[53].
In the case Kx ,y "/0, the AS DE Eq. (23) results in

non-collinear orientation of spins Sa and Sb of the MV

dn�/dn�1 dimer, which were oriented in parallel by the

isotropic Anderson�/Hasegawa DE interaction.

For the MV d2�/d3 cluster. The AS DE contributions

to ZFS parameter DS is different for the E�(S?�/5/2)

and E�(S?�/5/2) states: DS
9(5/2)�/DS�/dK

9(5/2),

dK
9(5/2)�/2Kz

2J /t(t9/15J ) [53].

5. AS DE anisotropy of g-factor in the MV d1�/d0 cluster

For the MV d1�/d0 cluster (S�/1/2) in the AH DE

plus AS DE (Kx ,y ,z "/0) model, the Zeeman interaction
Hz�/g0bSH (g0 is g-factor of the localized system) forms

the Zeeman levels in the parallel (z) and perpendicular

(x ) orientations

E9
a �9ft2�K2�h2

a92ha[t2�K2
a ]1=2g1=2

(27)

where a�/x , z ; ha�/g0Ha/2. In the case K�/0, the

Zeeman splitting is isotropic 9/(t9/ha). The AS DE

contribution to the g-factors has the form:

ga�g0f(t2�K2
a )=(t2�K2)g1=2

(28)

In the case Kx ,y "/0, Kz �/0, we obtain an anisotropy of

g-factors (gzB/gx) induced by AS DE.

6. The crystal field splitting and anisotropic double

exchange in the MV d9�/d8 cluster

In the d8�/d9 MV cluster, the detailed consideration

of the CF splittings and the SOC admixture of the 3T2

and 1T2 excited terms to the ground 3A2 state of the

high-spin d8-ion results in the modification of the AS

DE parameters and DM AS exchange constant [53]. The

AS DE parameters Kab
k are different for the states with

different total spin S and for the 3/2�/1/2 AS DE mixing
terms.

The SOC admixture to the ground 3A2 state of the 3T2

and 1T2 excited terms of the d8-ion (with the tetragonal

splitting) leads to AN DE splitting of the DE levels in

the MV dimeric cluster of orbitally non-degenerate ions.

The AN DE inter-ion interaction HAN? �/TabSaGab? Sb

results in an axial ZFS of the E9(3/2) AH levels, which

may be described by the AN DE effective Hamiltonian

HANDE�G?(3=2)Tab[S2
z �S(S�1)=3] (29)

where Tab is the AH transfer operator (�F9(3/

2)jTabjF9(3/2��/9/1), G?(3/2) is the AN DE parameter

of the easy-axis two-ion anisotropy [53]. The G?(3/2) AN

DE parameter is proportional to the ta(g1a�/g2a)2 and

(ta�/tv)(g1a
2 �/g2a

2 ) terms, where the g1a and g2a coeffi-

cients determine the SOC admixture of the a compo-

nents of the 3T2 and 1T2 excited terms, respectively [53].

The G?(3/2) AN DE parameter is proportional to the
transfer integral ta, i.e. depends on an anisotropy of the

ET (DE). The G?(3/2) parameter of the AN DE splitting

of the DE states with S�/1 does not depend on u and J.

In comparison, the AS DE contribution to the second

order ZFS parameter is proportional to K2J/t(t9/6J)

(Eq. (21)). The G?(3/2) contribution to ZFS may be the

value of the order of magnitude 0.1�/1 cm�1 since ta�/

103�/104 cm�1. The axial AN DE contributions to ZFS
are different for the E9(3/2) levels: 2[DS

9G?(3/2)]. The

AN DE in the clusters of orbitally degenerate ions was

considered in Ref. [18].

M.I. Belinsky / Polyhedron 22 (2003) 2253�/2265 2259



7. Antisymmetric double exchange in the MV [d9�/d10�/

d10]([d1�/d0�/d0] trimer

We consider first the AS DE coupling in the [Cu2��/

Cu��/Cu�]([d9�/d10�/d10]) trimers with the hole trans-

fer. The ground orbital of the Cu(II) ion is 8a�/(v0)a.

The isotropic DE interaction in this trigonal trimer

forms the DE states, which are characterized by IR G�/

A1 and E of the D3 group symmetry of the cluster with

the migration of the extra hole among the three ions

[13]. The A-type wave function represents the symme-

trical combination of the three localized states: F(A)�/

[ja*bc��/jab*c��/jabc*�]/�3{F(2A1)�/(8a�/8b�/8c)/

�3}. For the twofold degenerate E-state we obtain

F(Ex)�/[jab*c��/jabc*�]/�2, F(Ey)�/[2ja*bc��/

jab*c��/jabc*�]/�6{F(2Ex)�/(8b�/8c)/�2, F(2Ey)�/

(28a�/8b�/8c)/�6}. The system has the same energy

in all localizations.

The Moriya transfer Hamiltonian has the following

form for the MV trimer

Ht�
X

a;b�a;b;c

ftab[a�
� b��a�¡ b¡]� iK9

ab[a�
� b¡�a�

¡ b¡]

� iK�
aba

�
¡ b�� iK�

aba
�
� b¡g (30)

For the trigonal cluster (the D3 group of symmetry) the

isotropic DE parameters t arc symmetric tab�/tba, tac�/

tca, tbc�/tcb, tab�/tbc�/tac�/t . The F(2A1) and F(2E)

wave functions diagonalize the DE coupling (t terms) in
Eq. (30) without SOC (Kab�/0): E(2A1)�/2t , E(2E)�/�/

t . The DE interaction does not depend on M. In the case

of positive DE parameter t , the migration of the extra

hole in the delocalized [Cu4/3��/Cu��/Cu�] cluster

forms the trigonal fourfold degenerate 2E DE term.

As it follows from the group-theoretical consideration

[52], the trigonal orbitally degenerate 2E term must be

split by SOC into two Kramers doublets in according
with the expansion E�D(1=2)�(Ā1�Ā2)�Ē; where

Ā1; Ā2; Ē are IR of the double group D3. The extra

degeneracy of the DE ground state 2E is the result of the

lack of SOC in the theory of DE in trimers. The effective

Hamiltonian of the SOC for the 2E term of the trigonal

group has a form [49]:

Heff �DT(A2g)SZ (31)

T(A2g) is the orbital operator in the trigonal base u9�/

(ux9/uy )/�2 [49] which transforms like the base of IR
A2g of the trigonal D3 group. The effective SOC

Hamiltonian Eq. (31) results in the splitting of the 2E

term

E[u9(M�91=2)]�E[u9(M��1=2)]�D (32)

into two Kramers sublevels 2E[u9(9/1/2)] and 2E[u9(�/

1/2)]. The splitting is linear on SOC. In that way, the

group-theoretical consideration and the effective Hamil-

tonian method show that the ground state 2E DE term

of the trigonal MV cluster must be split linearly by SOC

into two Kramers doublets [54].

For finding this splitting we will consider the isotropic

t-terms and vector transfer AS DE terms Kab
k , (Kab

v �/�/

Kba
v ) in the Hamiltonian Eq. (30). The trigonal symme-

try of the trimer results in the equivalence of the pair AS

DE interactions: jKab
v j�/jKbc

v j�/jKac
v j. For the d9�/d10�/

d10 cluster, the operator of the AS DE may be

represented in the form HASDE�2iaa;bKabTab(Sb�Sa);
where ab�/ab , bc , ca , Tab is the isotropic transfer

operator for the ab pair.

The eigenvalue of the 2A1 DE term E(2A1)�/2t does
not depend on the AS DE parameter Kab: For the 2E DE

term, the matrix of the Moriya Hamiltonian Eq. (30)

results in the AS DE splitting E9�/�/t9/�(3(Kx
2�/Ky

2�/

Kz
2)) in the trigonal representation F9. The cluster AS

DE parameters Kk have a form

KZ� (KZ
ab�KZ

bc�KZ
ca)=

ffiffiffi
3

p
;

K9� (K9
ab �K9

bc �K9
ca )=

ffiffiffi
3

p (33)

The cyclic condition Kab
v �/Kbc

v �/Kca
v is fulfilled for the

pair contributions to the cluster AS DE parameter. In

the case Kx �/Ky �/0, the AS DE splitting of the 2E DE

term has the form

E[2E9(91=2)]��t�Kz

ffiffiffi
3

p
;

E[2E9(�1=2)]��t�Kz

ffiffiffi
3

p (34)

In the delocalized Cu4/3���/Cu4/3��/Cu4/3� cluster, the

AS DE splitting of the 2E DE term E [2E9(9/1/2)]�/

E [2E9(�/1/2)]�/2KZ�3 is linear on the AS DE para-

meter KZ . In the case Kx �/Ky �/0, the result Eq. (34)

coincides with the result of the effective Hamiltonian
Eq. (31) with D�/2KZ�3. The KZ component of the AS

DE interaction in the MV trimer plays the role of the

spin-orbital coupling of S with the orbital moment

operator of the T(A2g) type in the effective Hamiltonian

Eq. (31).

The AS DE coupling does not mix the DE A1 and E

terms with the same S�/1/2 since the KZ component of

the AS DE operator transforms as IR A2 of the trigonal
group.

For the microscopic consideration of the AS DE in

the [Cu2��/Cu��/Cu�] cluster, we suppose the octahe-

dral coordination of each Cu ion with the tetragonal

distortion, which forms the ground v d-orbital for the

Cu2�-ion. The renormalized SOC-admixed ground state

wave functions for the Cu(II) ion localized on the center

a have the form

va(m�91=2)�v0
a(91=2)� igjj?a(�1=2)

9gnh?a(�1=2)9 igzz?a(91=2) (35)

where d-orbital functions refer to the local (a, b, c)

Cartesian frame, gz�/l /Dz, gc�/l/2Dc , c�/j , h , and a
a(b) {c} for the ja*bc� (ab*c�) {abc*�} localization. We
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will consider the trimer with the local za-axis of each

octahedra oriented on the center of the trimer with the

small tilt u from the plain of the trimer. Using the va d-

orbitals Eq. (36), we obtain the matrix elements of the
resonance coupling Vab between the three localizations

[54]:

hFa+bc(S�1=2; M�91=2)jVabjFab�c(1=2; 91=2)i
�tv9 iKz

ab;

hFa+bc(1=2; �1=2)jVabjFab�c(1=2; 91=2)i
� i(Kj

ab� iKh
ab);

hFab+c(1=2; 91=2)jVbcjFabc�(1=2; 91=2)i�tv9 iKz
bc;

hFabc+(1=2; 91=2)jVacjFa�bc(1=2; 91=2)i
�tv9 iKz

ca

(36)

The components of the real AS DE parameters Kab
k for

the pair ab (�/ab, bc, ca) have a form (c�/j, h)

KC
ab�gC[hv0

bjjCai�hv0
ajjCbi]; Kz

ab

�gz[hv0
ajjzbi�hv0

bjjzai] (37)

The comparison of the results Eqs. (37) and (38) of

the microscopic calculation with the results of the

Moriya model Hamiltonian Eq. (31) shows that the

AS DE parameters Kab
Z , Kab

9 of the Hamiltonian Eq.

(31) may be represented through the microscopic para-

meters Kab
Z ; Kab

Z �/Kab
z ; Kab

9 �/Kab
j 9/iKab

h . The transfer
integrals between the ground orbital state va

0 [vb
0 ] on the

center a [b] and the excited CF state fa[fb] (f�/j , h , z )

on the center [a] are different from zero due to the

relative tilt of the distorted octahedra in the MV trimer.

In the MV trimer with the local za-axes of octahedra

directed on the shifted up (u�/1) center of the trimer,

the local 3d-orbitals of the Cu2� ion localized on the

center a may be written in the common (cluster) XYZ-
coordination system (8A) in the form

va�vA=2�
ffiffiffi
3

p
uA=2�ujA;

ua��uA=2�
ffiffiffi
3

p
vA=2�u

ffiffiffi
3

p
jA;

ja��jA�u(vA�
ffiffiffi
3

p
uA);

ha��zA�uhA; za�hA�uzA

(38)

In the case of the localization of the extra hole on the

centers b�/b, c, the local d-orbitals have the following
form in the common coordination system [54]:

vb��vj=4�
ffiffiffi
3

p
uj=2�

ffiffiffi
3

p
zj=49u(

ffiffiffi
3

p
hj9jj)=2;

ub�
ffiffiffi
3

p
vj=4�uj=293zj=49u

ffiffiffi
3

p
(

ffiffiffi
3

p
hj9jj)=2;

jb�jj=29
ffiffiffi
3

p
hj=2�u(

ffiffiffi
3

p
uj�vj=2�

ffiffiffi
3

p
zj=2);

hb�zj=2�
ffiffiffi
3

p
vj=2�u(hj�

ffiffiffi
3

p
jj)=2;

zb��hj=29
ffiffiffi
3

p
jj=2�u(zj�

ffiffiffi
3

p
vj)=2

(39)

where the upper (lower) signs in the right part of Eq.

(39) correspond to the b�/b, j�/B (b�/c, j�/C) indexes.

The isotropic DE parameters in the cluster coordinate

system have a form tab(v)�/�vajjvb��/(6tu�/tv)/8, ab�/

ab, bc, ac and tv�/tz , tj�/th for the trigonal trimer.

By using Eqs. (38) and (39), we obtain the following

non-zero transfer integral between the ground va
0 and

excited cb states in the MV pair of the trigonal trimer:

hv0
ajjzbi��hv0

bjjzai�u
ffiffiffi
3

p
(tv�2tj)=4;

hv0
ajjjbi�hv0

bjjjai��u(6tu�2tj�tv)=4;

hv0
ajjhbi��hv0

bjjhai��
ffiffiffi
3

p
tv

(40)

ab�/ab, bc, ca. The transfer integrals Eq. (40) [54]

essentially differ from the transfer integrals for the MV

dimer due to the strong tilt of the octahedra in the

trimer. The components Kab
k of the vector coefficient of

the AS DE in the trimer (ab�/ab, bc, ca) have a form:

Kz
ab�ugz

ffiffiffi
3

p
(tv�2tj)=2; Kh

ab��gh
ffiffiffi
3

p
tv=2;

Kj
ab�0

(41)

For the monomeric d9 ion, the gz and gh�/gj
parameters determine the deviation of the g-factors of

the Cu2� ion from the value g0�/2.00 due to SOC:

Dgjj�/4g0gz , Dg	�/g0gj [51]. The estimation of the Kab
k

components of the AS DE vector may be obtained as

Kab
z �/uDgjj�3(tv�/2tj)/16, Kab

h �/Dg	gh�3tv/4.

The Kab
z components of the AS DE vector in the ab

pair are directed perpendicular to the plane of the trimer

along the trigonal Z -axis of the cluster Kab
Z �/Kab

z ,
Kbc

Z �/Kbc
z , Kca

Z �/Kca
z , Kab

Z �/Kbc
Z �/Kca

Z . The calcula-

tions of the ‘in plane’ components of the Kab AS DE

vector coefficients show that Kab
j �/0 and the Kab

h

components are directed along the ab vector for the

each pair and jKab
h j�/jKbc

h j�/jKca
h j. The pair vectors Kab

contribute to the cluster K parameter as a sum K�
(Kab�Kbc�Kca)=3: The cluster KX and KY parameters

are equal to zero due to the trigonal symmetry and the
cyclic conditions. In that way, the vector of the AS DE

coupling of the trigonal trimer

KZ� (KZ
ab�KZ

bc�KZ
ca)=3�ugz

ffiffiffi
3

p
(tv�2tj)=2;

KX�KY�0
(42)

is directed alone the trigonal Z -axis of the cluster. The

KZ"/0, KZ�/l , KX�/KY�/0 condition confirms the

effective Hamiltonian Eq. (31) results.

The AS DE splitting and the vector parameters Eq.

(42) in the MV trimer is essentially different from the AS

DE contributions in the MV dimers [53]. In the MV

dimer, AS DE contributes in the second order to the

ZFS parameters (Eq. (21)). In the trigonal trimer, the
splitting of the ground 2E term is determined only by the

AS DE interaction. The splitting D is linear on the AS

DE parameter KZ, which allows one to find the AS DE

M.I. Belinsky / Polyhedron 22 (2003) 2253�/2265 2261



parameter experimentally from the magnetic and EPR

measurements.

By using the intrinsic parameters l�/829 cm�1 and

oz�/12 300 cm�1 for the Cu2� ion and, for example t�/

104 cm�1, u�/0.01�/0.1 we can estimate the AS DE

parameter as KZ�/5�/50 cm�1 and D(�/2KZ�3)�/10

cm�1.

8. Anisotropy of the cluster g-factors and magnetic

moment induced by the AS double exchange in the MV
trimer

We will include the Zeeman interaction HZ�
agabSaH with isotropic local g-factors ga�/g0 for

consideration of the AS DE effect in the Zeeman

splitting and magnetic anisotropy. The Zeeman splitting

and g -factor are isotropic for the exited 2A1 DE term of

the delocalized [Cu2��/Cu��/Cu�] trimer. For the
ground 2E DE term, the Zeeman splitting has the

form E��t9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(

ffiffiffi
3

p
KZ9hZ)2�h2

X �h2
Y

q
where ha�/

g0bHa /2. In the external magnetic field H�/HZ parallel
to the trigonal axis Z of the cluster, the Zeeman

splittings of the AS DE sublevels E9(9/1/2) and

E9(�/1/2) are linear (Fig. 3):

E ½½
1;2��t�

ffiffiffi
3

p
KZ9hZ; E ½½

1;2��t�
ffiffiffi
3

p
KZ9hZ (43)

In the case of the external field H�/HX in the plain of

the cluster, the Zeeman splitting

E	
1;2��t�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K2

Z�h2
X

q
; E	

3;4��t�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3K2

Z�h2
X

q
(44)

depend non-linearly on the magnetic field and E1,2
	�/�/

t�/�3KZ�/h2
X /2�3KZ , E3,4

	�/�/t�/�3KZ�/h2
X/2�3KZ

by assuming that hZ �/KZ (Fig. 3(b)). In the considered

model, the g-factors are strongly anisotropic (gjj�/g0,

g	�/0) for the Kramers sublevels of the ground 2E DE
term [54].

Strong anisotropy of the Zeeman splitting of the

ground E term results in an anisotropy of the magnetic

susceptibility x (or effective magnetic moment meff �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3xkT=N

p
) of the cluster in the ground state [54]. In the

small magnetic field H�/HZ , h �/kT the magnetic

susceptibility xjj is described by the Curie law xjj�/C /

T due to linear field dependence for H�/HZ . The non-

linear field dependence in the perpendicular magnetic
field H�/HX results in an essential deviation of x	 from

the Curie law:

x	�(Ck=
ffiffiffi
3

p
KZ)th(

ffiffiffi
3

p
KZ=kT) for kT ; hX �KZ:/

In the case of the relatively small AS DE splitting of

the ground 2E DE term (D�/1�/5 cm�1), the AS DE

coupling constant may be found from the maximum in

the low temperature heat capacity c(T), which is
determined by the AS DE interval D�/2KZ�3.

9. The AS double exchange in the [dn�/dn�/dn91] MV

clusters

The MV clusters [dn�/dn�/dn91] with n�/1, 2. . .
demonstrate new AS DE effects, which can not be

considered in the simple MV [d9�/d10�/d10] ([d1�/d0�/

d0]) cluster with S�/1/2: the AS DE mixing of the

trigonal DE levels with different S . In the [d9�/d9�/d10]

([d1�/d1�/d0]) MV cluster with the migrating hole, the

total spin is S�/O, 1. In this case, the inter-ion

interactions in the localized system include the HE

HHE�aJabSaSb and DM exchange HDM�aGab[Sa�
Sb] between two ions with sj �/1/2. The isotropic DE

and HE (t �/J model) form the isotropic DE terms 3A2,
3E ;1A1, 1E : E [3A2]�/t�/2J , E [3E ]�/�/t�/2J ; E [1A1]�/

2t , E [1E ]�/�/t [13]. Since the KX and KY components

of the AS DE interaction are equal to zero in the

trigonal MV trimer (Eq. (42)), the transfer Hamiltonian

Eq. (31) has the only Z components of the spin-flop

hopping for the trigonal MV trimer

HZ
1 �

X
a;b�a;b;c

ftab[a�� b��a�¡ b¡]� iKz
ab[a�

� b¡�a�¡ b¡]g

(45)

The Z component of the AS DE spin-transfer interac-

tion

HZ
ASDE�2i

X
a;b

KZ
abTab(SZ

b �SZ
a ) (46)

is the spin equivalent of the operator Eq. (45) for the

considered cluster.

Fig. 3. (a) The AS DE splitting DASDE�/2KZ�3 of the DE trigonal 2E

ground state of the delocalized [Cu(II)Cu2(I)] MV cluster. (b) The

Zeeman splittings of the E9(9/1/2) and E9(�/1/2) Kramers doublets

of the trigonal 2E term in the external magnetic field H�/Hz (solid

lines) parallel to the trigonal Z -axis and H�/HX (dash-doted lines) in

the plain of the trimeric cluster.
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The AS DE coupling mixes the 3A2 and 1A1 trigonal

DE terms. The AS DE mixing �F(3A2, M�/

0)jH1
ZjF(1A1, M�/0)��/�/2iKZ of the 3A2 and 1A1

DE terms is determined by the cluster AS DE parameter
KZ�/(Kab

Z�/Kbc
Z�/Kca

Z)/3 The DM AS exchange mixes

the S�/1 and S�/0 localized levels of the trimer in each

localized state, for example,

�ca *bc(1,0)jHDM
Z jca *bc (0,0)��/�/iGbc

Z /2. In the deloca-

lized MV cluster, the both AS DE and DM AS exchange

contribute to the SOC mixing of the terms 3A1 and 1A1

hF(3A2; 0)jHZ
1 �HZ

DMjF(1A1; 0)i��2i(KZ�GZ=4);

GZ�(GZ
ab�GZ

ba�GZ
ca)=3

The effective ZFS Hamiltonian HZFS�/DS[SZ
2�/

S (S�/1)/3] [49�/51] describes ZFS 2DS of the S�/1

states of the trigonal cluster in the second order on

SOC. The local contributions to ZFS are zero (si �/1/2).

The second order contribution of the AS DE and DM

AS exchange to the ZFS parameter D0(3A2) of the 3A2

trigonal DE term (due to the mixing with the 1A1 singlet)

has a form D0(3A2)�/2(KZ�/GZ /4)2/(2t�/J ). The AS

DE contribution to ZFS is essentially stronger than the

pure DM AS exchange contribution since KZ �/D(g /g )t ,

GZ �/D(g /g )J and t �/J .

For the orbitally degenerate 3E DE term, the AS DE

results in the linear AS DE fine splitting of the 3E term

E9[M�91]�t�2J�
ffiffiffiffiffiffiffiffiffi
3KZ

p
; E�[M�91]�

t�2J�
ffiffiffiffiffiffiffiffiffi
3KZ

p
; and in the second order contribution to

the D0(3E ) ZFS parameter of the 3E term D0(3E )�/�/

(KZ�/GZ /2)2/2(t�/J) [54].

The DE states 3E and 1E are not mixed with the 3A2

and 1A1 terms by the AS DE and DM AS exchange.

The AS DE effect in the MV trimers with high

individual spins was considered in Ref. [54]. In all MV

trimers, only the AS DE coupling determines the linear

fine splittings of the 2S�1E DE terms with maximal total

spin S [o1(2Smax�1E9;M)�9KZM
ffiffiffi
3

p
=Smax]: For the

2S�1E terms with non-maximal total spin S (spin-

frustrated levels), both AS DE and DM AS exchange

determine the linear splittings, since AS couplings mix

the S states with different intermediate spins [54]. The

AS DE contribution to the linear fine splittings D
dominates since KZ�/GZ. The AS DE coupling mixes
the 2S�1A1 and 2S�1A2, 2S�1E and 2S�1E DE terms

DS�/0,1. The AS DE does not mix the A and E terms

and also the same Ai terms since the operator of the AS

DE interaction transforms on the A2g representation of

the trigonal D3 group [54]. In the trimeric clusters with

high individual spin Si , both AS DE and DM AS

exchange are active: the DM AS exchange mixes the

localized S levels and the AS DE mixes the DE terms of
the delocalized trimer. The AS DE plus DM AS

exchange mixing of the DE levels 2S�1G with different

S and also the mixing of the 2S�1Gi terms with different

intermediate spins Sij determine the AS contributions to

the cluster ZFS parameters DS . The AS DE contribu-

tions to the second order ZFS parameters DS in trimers

are stronger than the DM ASE contributions since
KZ�/GZ, KZ/GZ�/t /J . The AS DE contributions are

different for different 2S�1Ai and 2S�1E terms. In

general, the AS DE contributions to the cluster ZFS

parameters DS(2S�1Gi) has the form

�DS(2S�1Gi)�a[(mKZ�nGZ)2=(pt�qJ)]:/

10. Conclusion

An AS DE coupling was considered for the MV
dimeric dn�/dn�1 and trimeric dn�/dn�1�/dn�1 clus-

ters.

10.1. Dimeric MV clusters

Strong Anderson�/Hasegawa DE and HE interactions
(t �/J model) form isotropic exchange-resonance states

E9
0 (S ) characterized by the total spin S and parity.

The SOC in the dn�/dn�1 clusters in the t �/J model

may be represented in the form of the effective AS DE

Hamiltonian HASDE�2iKabTab(Sb�Sa)/(Eq. (23)) where

Kab is the real AS (Kab��Kba) vector coefficient,

Þ

Tab is

the isotropic transfer operator. The AS DE Hamiltonian

has a form of the spin-transfer interaction. The Eqs.
(24)�/(26) describe the analytical solutions of the AS DE

Hamiltonian Eq. (23) for the MV dimers. The matrix

elements of the AS DE interaction depend on the

projection M of total spin. The AS DE leads to non-

collinear orientation of spins.

10.1.1. The d1�/d0(d9�/d10) clusters

An AS DE mixes the isotropic AH resonance states

E�
0 (S�//

1
2
) and E�

0 (/1
2
) and forms the effective spin S ?�//

1
2

The resonance splitting E0
9(S?� 1

2
)�9

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�K2

ab

q
is

characterized by the effective DE parameter teff �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2�K2

ab

q
: The vector of the AS DE in the MV dimer

is directed perpendicular to the Z -axis of the dimer. The

AS DE admixture of the excited crystal field states

results in the modification of the DE (transfer) para-

meter t . AS DE results in an anisotropy of g -factors.

10.1.2. The d8�/d9(d2�/d1) cluster

An AS DE mixes the Anderson�/Hasegawa DE states

E�
0 (S ) and E�

0 (S ) of different parity with the same total

spin S (S�/3/2 or 1
2
): The AS DE and DM AS exchange

mix the AH states E9
0 (3/2) and E9

0 (/1
2
) of the same parity

with different total spin S , DS�/1. For the MV d8�/

d9(d1�/d2) cluster with an initial ZFS 2DS of the E9
0 (3/
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2) states (HZFS
0 �/DS [SZ

2�/S((S�/1)/3]) the AS DE

contributes to the resulting ZFSs of the high-spin (S�/

3/2) states. The AS DE contributions dK
9(3/2) to the

ZFS parameters DS are different for the E�(3/2) and
E�(3/2) states DZFS

9 [E9(3/2)]�/2[DS�/dK
9(3/2)]. The AS

DE contributions dK
9(3/2) are proportional to K2J /t(t9/

6J ). The AS DE contributions to ZFS are anisotropic.

The taking into account the DM AS exchange mixing

of the localized levels with different total spin S results

in the modification of the dx
9 part of the ZFS

parameters DS:d̃9
x �d9

x �v9
x ; where vx

9�/Gx(4Kx9/

3Gx)/6(t9/6J ). The contribution of AS DE to the ZFS
parameters in the delocalized MV system is stronger

than the DM AS exchange contribution since KK �/GK .

In the MV dn�/dn�1 dimers with the Anderson�/

Hasegawa DE and HE inter-ion coupling, an AS DE

HASDE�2iKab

Þ

Tab(Sb�Sc) plays the role analogous to

the role of the DM AS exchange HDM�Gab(Sa�Sb) in

the mono-valent dn�/dn pair with the HE inter-ion

coupling.

10.2. Trimeric MV clusters

The AS DE results in the linear fine splittings D of the
isotropic degenerate 2S�1E DE terms. The splittings D
are proportional to the AS DE parameter KZ �/(Kab

Z�/

Kbc
Z�/Kca

Z )/3 of the MV trimer. The vector of the AS DE

interaction KZ is directed along the trigonal Z -axis of

the trigonal MV cluster. Only AS DE mixes the 2S�1A1

and 2S�1A2, 2S�1E and 2S�1E DE terms with the same

total spin S . The AS DE and DM AS exchange mix the
2S�1A1 and 2S�1A2, 2S�1E and 2S�1E DE terms with
different S . AS DE does not mix the A and E terms and

also the same Ai terms. In trimeric MV clusters with

high-spins Si , the AS DE and DM AS exchange mixing

of the DE levels 2S�1G with different total spin S (DS�/

1) determines the contributions to the second order ZFS

trigonal DS parameters (HZFS�/DS [SZ
2�/S (S�/1)/3]).

The AS DE contributions to the ZFS parameters DS

are different for the Ai and E terms. For the delocalized
[Cu(II)Cu2(I)] MV cluster, the AS DE splitting D�/

2KZ�3 of the ground 2E DE term determines strong

anisotropy of the Zeeman splitting, anisotropy of g -

factors and magnetic properties.
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